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We develop a multiperiod market model describing both the process by which traders
learn about their ability and how a bias in this learning can create overconfident traders.
A trader in our model initially does not know his own ability. He infers this ability from
his successes and failures. In assessing his ability the trader takes too much credit for
his successes. This leads him to become overconfident. A trader’s expected level of over-
confidence increases in the early stages of his career. Then, with more experience, he
comes to better recognize his own ability. The patterns in trading volume, expected prof-
its, price volatility, and expected prices resulting from this endogenous overconfidence
are analyzed.

It is a common feature of human existence that we constantly learn about our
own abilities by observing the consequences of our actions. For most people
there is an attribution bias to this learning: we tend to overestimate the degree
to which we are responsible for our own successes [Wolosin, Sherman, and
Till (1973), Langer and Roth (1975), Miller and Ross (1975)]. As Hastorf,
Schneider, and Polifka (1970) write, “We are prone to attribute success to
our own dispositions and failure to external forces.”
In this article we develop a multiperiod market model describing both the

process by which traders learn about their ability and how a bias in this
learning can create overconfident traders. Traders in our model initially do
not know their ability. They learn about their ability through experience.
Traders who successfully forecast next period dividends improperly update
their beliefs; they overweight the possibility that their success was due to
superior ability. In so doing they become overconfident.
In our model, a trader’s level of overconfidence changes dynamically with

his successes and failures. A trader is not overconfident when he begins
to trade. Ex ante, his expected overconfidence increases over his first sev-
eral trading periods and then declines. Thus the greatest overconfidence in a
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trader’s life span comes early in his career. After this he tends to develop a
progressively more realistic assessment of his abilities as he ages.
One criticism of models of nonrational behavior is that nonrational traders

will underperform rational traders and eventually be driven to the margins
of markets, if not out of them altogether [Alchian (1950), Friedman (1953),
and more recently, Blume and Easley (1982, 1992), Luo (1998)]. This is,
however, not always the case. De Long et al. (1990) present an overlapping
generations model in which nonrational traders earn higher expected profits
than rational traders by bearing a disproportionate amount of the risk that
they themselves create. In our model, the most overconfident and nonrational
traders are not the poorest traders. For any given level of learning bias and
trading experience, it is successful traders, though not necessarily the most
successful traders, who are the most overconfident. Overconfidence does not
make traders wealthy, but the process of becoming wealthy can make traders
overconfident.
A large literature demonstrates that people are usually overconfident and

that, in particular, they are overconfident about the precision of their knowl-
edge.1 De Long et al. (1991), Kyle and Wang (1997), Wang (1997), Benos
(1998), and Odean (1998) examine models with statically overconfident
traders.2 Daniel, Hirshleifer, and Subrahmanyam (1998) look at trader over-
confidence in a dynamic model. Our article differs from theirs in that we
concentrate on the dynamics by which self-serving attribution bias engenders
overconfidence in traders, and not on the joint distribution of trader ability
and the risky security’s final payoff. Our approach also has the advantage of
being analytically tractable.
In our model, overconfidence is determined endogenously and changes

dynamically over a trader’s life. This enables us to make predictions about
when a trader is most likely to be overconfident (when he is inexperienced
and successful) and how overconfidence will change during a trader’s life
(it will, on average, increase early in a trader’s career and then gradually
decrease). The model also has implications for changing market conditions.
For example, most equity market participants have long positions and benefit
from upward price movements. We would therefore expect aggregate over-
confidence to be higher after market gains and lower after market losses.
Since, as we show, greater overconfidence leads to greater trading volume,
this suggests that trading volume will be greater after market gains and lower
after market losses. Indeed, Statman and Thorley (1998) find that this is
the case.

1 See, for example, Alpert and Raiffa (1982) and Lichtenstein, Fischhoff, and Phillips (1982). Odean (1998)
provides an overview of this literature.

2 Rabin and Schrag (1999) develop a model of confirmatory bias, the tendency to interpret new information as
confirming one’s previous beliefs. Inasmuch as people tend to have positive self-images, confirming bias and
self-serving attribution bias are related. Our article differs considerably from Rabin and Schrag’s in that we
analyze the effect of attribution bias on the overconfidence of traders in financial markets.
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The rest of this article is organized as follows. In Section 1, we introduce
a one-security multiperiod economy with one insider, one liquidity trader,
and one market maker. In Section 2, we develop the conditions under which
there is a unique linear equilibrium in our economy. This linear equilibrium
is used in Section 3 to analyze the effects of the insider’s learning bias
on his overconfidence and profits, as well as on the market’s trading volume,
volatility, and price patterns. Section 4 discusses the empirical implications of
the model. Section 5 concludes. All the proofs are contained in Appendix A.

1. The Economy

We study a multiperiod economy in which only one risky asset is traded
among three market participants: an informed trader, a liquidity trader, and a
market maker. At the end of period t , the risky asset pays off a dividend v̂t ,
unknown to all the market participants at the beginning of the period.3

At the beginning of each period t , the risk-neutral informed trader (also
called the insider) observes a signal θ̂t which is correlated with v̂t . The signal
θ̂t is given by θ̂t = δ̂t v̂t + (1− δ̂t )ε̂t , where ε̂t has the same distribution as v̂t ,
but is independent from it. The variable δ̂t takes the values 0 or 1. Since ε̂t is
independent from v̂t , the insider’s information will only be useful when δ̂t is
equal to one. We assume that this will happen with probability â, where â

is the insider’s ability. We assume that nobody (including the insider himself)
knows the insider’s ability â at the outset. Instead, we assume that a priori
the insider’s ability is high (â = H ) with probability φ0 and low (â = L)
with probability 1− φ0, where 0 < L < H < 1 and 0 < φ0 < 1. Of course,
since the security dividend v̂t is announced at the end of every period t , the
insider will know at the end of every period whether his information for that
period was real (δ̂t = 1) or was just pure noise (δ̂t = 0).4 For tractability
reasons, we also assume that the market maker observes θ̂t at the end of
period t , so that his information at the end of every period is the same as the
insider’s. This information will be useful to both the insider and the market
maker in assessing the insider’s ability.
Our model seeks to describe the behavior of an informed trader with a

learning bias. In particular, we want to model the phenomenon that traders
usually think too much of their ability when they have been successful at pre-
dicting the market in the past. In statistical terms, this will mean that traders
update their ability beliefs too much when they are right. Before formally
including this behavior into our model, we describe how a rational/unbiased
insider would react to the information he gathers from past trading rounds.
Let ŝt denote the number of times that the insider’s information was real in

the first t periods, that is, ŝt = ∑t
u=1 δ̂u. It can be shown, using Bayes’ rule,

3 Throughout the whole article, we use a “hat” over a variable to denote the fact that it is a random variable.
4 This will be the case since ε̂t = v̂t happens with zero probability with the continuous distributions that we
will specify later.
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that at the end of t periods, a rational insider’s updated beliefs about his own
ability will be given by

φt(s)≡Pr{â=H | ŝt =s}= Hs(1−H)t−sφ0

Hs(1−H)t−sφ0+Ls(1−L)t−s(1−φ0)
. (1)

We denote this rational insider’s updated expected ability by

µt(s) ≡ E[â | ŝt = s] = Hφt(s) + L[1− φt(s)]. (2)

Since we do not assume any kind of irrational behavior on the part of the
market maker, and since the market maker’s information set is the same
as the insider’s at the end of every period, this will be the market maker’s
updated belief at the end of period t .
In modeling the self-serving attribution bias (which we simply refer to as

the learning bias from now on), we assume that a trader who successfully
forecasts a dividend weights this success too heavily when applying Bayes’
rule to assess his own ability. In choosing our updating rule we seek to
accurately model the behavior psychologists have observed, to create a sim-
ple, tractable model, and to choose an updating rule that departs gradually
from rational updating. Such a rule can then be used to describe traders with
different degrees of bias, including unbiased traders. Psychologists find that
when people succeed, they are prone to believe that success was due to their
personal abilities rather than to chance or outside factors; when they fail,
they tend to attribute their failure to chance and outside factors rather than
to their lack of ability. They also find that “self-enhancing attributions for
success are more common than self-protective attributions for failure” [Fiske
and Taylor (1991); also see Miller and Ross (1975)]. This observed behavior
can be modeled by assuming that, when a trader applies Bayes’ rule to update
his belief about his ability, he overweights his successes, he underweights his
failures, and he overweights successes more than he underweights failures.
The model is simpler and the qualitative results unchanged if one simply
assumes, as we do, that successes are weighted too heavily and failures are
weighted correctly.
More precisely, we assume that when evaluating his own ability, the insider

overweights his successes at predicting the security’s dividend by a learning
bias factor γ ≥ 1, where γ = 1 represents a rational insider. For example, at
the end of the first period, if the insider finds that θ̂1 = v̂1, the insider will
adjust his beliefs to

φ̄1(1) ≡ Prb{â = H | ŝ1 = 1} = γHφ0

γHφ0 + L(1− φ0)
, (3)

where the subscript to “Pr” denotes the fact that the probability is calculated
by a biased insider. This updated probability is larger than that of a rational
insider, that is, φ̄1(1) ≥ φ1(1). Also, as can be seen from Equation (3),
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φ̄1(1) will be higher the larger γ is, and φ̄1(1) → 1 as γ → ∞; in other
words, the learning bias dictates by how much the insider adjusts his beliefs
toward being a high ability insider. Moreover, our model departs continuously
from rationality in the sense that φ̄1(1) → φ1(1) as γ → 1. It is easily shown
that, in this case,

φ̄t (s)≡Prb{â=H | ŝt =s}= (γH)s(1−H)t−sφ0

(γH)s(1−H)t−sφ0+Ls(1−L)t−s(1−φ0)
, (4)

and the (biased) insider’s updated expected ability is given by

µ̄t (s) ≡ Eb[â | ŝt = s] = Hφ̄t(s) + L[1− φ̄t (s)]. (5)

Let π̂t denote the insider’s profits in period t . At the beginning of the period,
the risk-neutral insider observes his signal θ̂t ; he then chooses his demand
for the risky security in order to maximize his expected period t profits,5

conditional on both his signal and his ability beliefs µ̄t−1(ŝt−1) at that time.
We denote this demand by x̂t = Xt(θ̂t , ŝt−1).
The other trader in the economy trades for liquidity purposes in every

period. This liquidity trader’s demand in period t is given exogenously by
the random variable ẑt . Both orders, x̂t and ẑt , are sent to a market maker
who fills the orders. As in Kyle (1985), we assume that the market maker is
risk neutral and competitive, and will therefore set prices so as to make zero
expected profits. So if we denote the total order flow coming to the market
maker in period t by ω̂t = x̂t + ẑt , the market maker will set the security’s
price equal to

p̂t = Pt(ω̂t , ŝt−1) ≡ E[v̂t | ω̂t , ŝt−1]

in period t . An equilibrium to our model is defined as a sequence of pairs
of functions (Xt , Pt ), t = 1, 2, . . . , such that the insider’s demand Xt in
period t maximizes his expected profits (according to his own beliefs) for
that period given that he faces a price curve Pt , while the market maker is
expecting zero profit in that period.
As will become obvious later, the main results of this article are driven

by the insider’s updating dynamics. As such, the liquidity trader and the
market maker play only a minimal role in this model. In fact, their role
is essentially one of market clearing. The presence of the liquidity trader
introduces noise that will prevent the “no trade equilibrium” described by
Milgrom and Stokey (1982) from occurring. The competitive market maker
assumption is simply made out of convenience; the presence of a risk-neutral
rational trader would serve a similar purpose, as in Daniel, Hirshleifer, and
Subrahmanyam (1998). The model can be extended to eliminate the presence

5 Since both the risky dividend and the insider’s signal are announced at the end of every period, this objective
is consistent with the insider maximizing long-term profits.
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of the liquidity trader and the market maker, to introduce a monopolist spe-
cialist, and to increase the number of market participants in an overlapping
generations setting. These alternative specifications do not affect the nature
of the insider’s updating and, therefore, do not change the main results of
the article. Details are available from the authors upon request.

2. A Linear Equilibrium

In this section we show that, when v̂t , ε̂t , and ẑt are jointly and independently
normal, there is a linear equilibrium to our economy. We assume that


v̂t
ε̂t
ẑt


 ∼ N




00
0


 ,


� 0 0
0 � 0
0 0 �




 , t = 1, 2, . . . , (6)

and that each such vector is independent of all the others. Note that it is
crucial that var(v̂t ) = var(ε̂t ), since we do not want the size of θ̂t to reveal
anything about the likelihood that δ̂t = 1 until v̂t is announced. In other
words, ability updating is only possible when both θ̂t and v̂t become observ-
able. Also note that, as in Kyle (1985), this normality assumption implies
that dividends and prices can take on negative values in this model; a posi-
tive mean for v̂t and ε̂t would reduce the likelihood of such occurrences, but
would not affect any of our results.
Let us conjecture that, in equilibrium, the function Xt(θ, s) is linear in θ ,

and that the function Pt(ω, s) is linear in ω:

Xt(θ, s) = βt(s) θ, (7a)

Pt(ω, s) = λt(s) ω. (7b)

Our objective is to find βt(s) and λt(s) which are consistent with this con-
jecture. We start with the following result.

Lemma 1. Assume that a linear equilibrium exists in period t; that is,
assume that Equations (7a) and (7b) hold. Then, in period t , the insider’s
demand for the risky security is given by

x̂t = µ̄t−1(ŝt−1)θ̂t
2λt(ŝt−1)

, (8)

and the market maker’s price schedule is given by

p̂t = µt−1(ŝt−1)βt (ŝt−1)�
β2t (ŝt−1)� + �

ω̂t . (9)
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This lemma establishes that we can indeed write x̂t = βt(ŝt−1)θ̂t and p̂t =
λt(ŝt−1)ω̂t as long as

βt(s) = µ̄t−1(s)
2λt(s)

, and (10)

λt(s) = µt−1(s)βt (s)�

β2t (s)� + �
. (11)

However, the result relies on the assumption that a linear equilibrium exists.
It turns out that this assumption is not always satisfied given the insider’s
learning bias. In fact, the following lemma derives the exact condition under
which such an equilibrium will exist in a given period t .

Lemma 2. In any given period t , there exists a linear equilibrium of the
form conjectured in Equations (7a) and (7b) if and only if µ̄t−1(ŝt−1) ≤
2µt−1(ŝt−1).

This condition states that, for an equilibrium to exist, the biased insider’s
beliefs about his ability cannot exceed those of the rational market maker by
too much. It effectively ensures that the insider will on average be making
profits, even though he may not be optimizing correctly due to his biased
beliefs.6 Were this condition not satisfied, the market maker would know that
the insider would take a position resulting on average in negative profits. Our
condition that the competitive market maker quotes a price schedule earning
him on average zero profits could then never be satisfied. This would result
in a market breakdown. The following lemma derives a condition that is both
necessary and sufficient to always avoid such outcomes.

Lemma 3. A necessary and sufficient condition for µ̄t−1(ŝt−1) > 2µt−1(ŝt−1)
to be avoided for any history up to any period t and any γ > 1 is that
H ≤ 2L.

Note that, for a given fixed value of γ , H ≤ 2L is too strong a condition
to avoid market breakdowns for any history; that is, the condition is then suf-
ficient but not necessary. However, since market breakdowns are outside the
scope of this article [see, e.g., Bhattacharya and Spiegel (1991)], we assume
that H ≤ 2L is always satisfied in the rest of our analysis. Such an assump-
tion allows us to vary γ throughout the article without having to worry about
the existence of an equilibrium, but does not affect the qualitative aspects of
our results. We finish this section with the following characterization of the
equilibrium.

6 This condition does not violate the absence of arbitrage results established by Bossaerts (1999). Although the
insider’s learning bias could introduce profit opportunities for other informed traders (were they present in
the economy), they do not lead to riskless arbitrage opportunities.
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Proposition 1. Assuming that H ≤ 2L, there is always a unique linear
equilibrium to the economy described in Section 1 In this equilibrium, the
insider’s demand and the market-maker’s price schedule are given by
Equations (7a) and (7b) with

βt(s) =
√

�

�

µ̄t−1(s)
2µt−1(s) − µ̄t−1(s)

, and (12a)

λt(s) = 1

2

√
�

�
µ̄t−1(s)

[
2µt−1(s) − µ̄t−1(s)

]
. (12b)

3. Properties of the Model

In this section we analyze the effects of the insider’s learning bias on the
properties and dynamics of the economy in equilibrium. We introduce a mea-
sure of overconfidence analogous to that found in static models and show that
the learning bias results in dynamically evolving insider overconfidence. We
then look at the effect of this changing overconfidence on trading volume,
trader profits, price volatility, as well as expected price patterns.

3.1 Convergence
If this financial market game were played to infinity, we would expect both
the insider and the market maker to eventually learn the exact ability â of the
insider. This would be true for a rational insider (γ = 1). However, since our
insider learns his ability with a personal bias, this result is not immediate;
in fact, as the following proposition shows, it is not true for a highly biased
insider.

Proposition 2. When â = H , the updated posteriors of the insider φ̄t (ŝt )

will converge to 1 almost surely as t → ∞. When â = L, the updated
posteriors of the insider φ̄t (ŝt ) will converge as follows:

φ̄t (ŝt )
a.s.−−→



0, if γ < γ ∗

φ0, if γ = γ ∗

1, if γ > γ ∗,

where γ ∗ = L

H

(
1−L

1−H

)(1−L)/L
.

So both the insider and the market maker will eventually learn the insider’s
ability precisely when it is high, and the market maker will always learn the
insider’s ability when it is low, but the insider will only do so if his learning
bias is not too large. One implication of this lemma is that a low-ability
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insider whose learning bias is sufficiently extreme may never acknowledge
his low ability, no matter how much experience he has.7

3.2 Patterns of overconfidence
As we showed in Section 3.1, the insider eventually learns his own ability,
provided that his learning is not too biased (i.e., provided that γ < γ ∗).
So when the insider’s ability is low, the insider eventually comes to his
senses and recognizes the fact that he is a low-ability insider. However, it
is always the case that the insider thinks too highly of himself relative to
an otherwise identical unbiased insider. This section introduces a measure
for this discrepancy; we call it the insider’s overconfidence. The evolution
of the insider’s overconfidence throughout his life is central to our study, as
this overconfidence measures by how much our model departs from a purely
rational setup in any given period.
In our model, an insider is considered very overconfident at the end of a

given period t if his updated expected ability at that time [µ̄t (ŝt )] is large
compared to the updated expected ability that a rational insider would have
reached with the same past history of successes and failures [µt(ŝt )]. To
measure the insider’s overconfidence at the end of t periods, we therefore
define the random variable

κ̂t ≡ Kt(ŝt ) ≡ µ̄t (ŝt )

µt (ŝt )
. (13)

Of course, when the insider is rational (γ = 1), the numerator is exactly equal
to the denominator of this expression, and κ̂t = 1 for all t . On the other hand,
when the insider’s learning is biased (γ > 1), we have µ̄t (ŝt ) ≥ µt(ŝt ), and
κ̂t ≥ 1 for all t . As the next proposition shows, the insider’s overconfidence
in period t is greater when the insider’s learning bias is large. In other words,
the insider’s overconfidence is directly attributable to his learning bias.

Proposition 3. The function Kt(s) defined in Equation (13) is increas-
ing in γ .

Since the insider’s overconfidence results from his learning bias when he
is successful, it is tempting to conclude that the more successful an insider is,
the more overconfident he will be. As we next show, this intuition is wrong.
First, since the insider updates his beliefs incorrectly only after successful

predictions, it is always true that µ̄t (0) = µt(0), and therefore Kt(0) = 1.
However, as soon as the insider successfully predicts one risky dividend,

7 Bossaerts (1999) shows that prior beliefs that are correctly updated using Bayes’ law converge to the right
posterior beliefs, whether the priors are biased or not. In contrast, our result shows that correct priors updated
incorrectly may not lead to the correct posteriors.
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his learning bias makes him overconfident,8 and µ̄t (1) > µt(1), so that
Kt(1) > 1. So it is always true that the insider’s first successful prediction
makes him overconfident. However, it is not always the case that an addi-
tional successful prediction always makes the insider more overconfident.
To see this, suppose that we are at the end of the second period. The

insider will then have been successful 0, 1, or 2 times. We already know that
K2(1) > K2(0) = 1 for any value of the insider’s learning bias parameter γ .
Now, suppose that γ is large. This means that if the insider is successful in the
first period, he will immediately (and perhaps falsely) jump to the conclusion
that he is a high ability insider, that is, µ̄1(1) is close to H . Since this one
successful period has already convinced the insider that his ability is high, the
second period results will not have much of an effect on his beliefs, whether
he is successful or not in that period, that is, µ̄2(2) is close to µ̄2(1). On the
other hand, if the insider had been rational (γ = 1), he would have adjusted
his expected ability beliefs more gradually. In particular, after a first-period
success, a rational insider does not automatically conclude that his ability is
high. Instead, he adjusts his posterior expected ability beliefs toward H , and
uses the second-period result to further adjust these beliefs: upward toward
H if he is successful, and downward toward L otherwise. As a result, µ2(2)
will be somewhat larger than µ2(1). Therefore, since µ̄2(2) ≈ µ̄2(1) and
µ2(2) > µ2(1), we have

K2(2) ≡ µ̄2(2)

µ2(2)
<

µ̄2(1)

µ2(1)
≡ K2(1),

and we see that K2(s) decreases when s goes from 1 to 2. The following
proposition describes this phenomenon in more details.

Proposition 4. The function Kt(s) defined in Equation (13) is increasing
over s ∈ {0, . . . , s∗

t } and decreasing over s ∈ {s∗
t , . . . , t}, for some s∗

t ∈
{1, . . . , t}.
We now turn to how the insider’s overconfidence is expected to behave

over time. To do this we describe the ex ante expected overconfidence level
of the insider, E[κ̂t ], through time. This is done in Figure 1 for different
values of γ . When γ is relatively small (γ < γ ∗), the insider will on average
be overconfident at first but, over time, will converge to rational behavior.
This can be explained as follows. Over a small number of trading peri-
ods, a trader’s success rate may greatly exceed that predicted by his ability.

8 In our model, traders are not overconfident when they begin to trade. It is through making forecasts and
trading that they become overconfident. This leads market participants to be, on average, overconfident. In
real markets, selection bias may cause even beginning traders to be overconfident. Indeed, since not everyone
trades, it is likely that people who rate their own trading abilities most highly will seek jobs as traders or will
trade actively on their own account. Those with actual high ability and those with high overconfidence will
rate their own ability highest. Thus, even at the entry level, we would expect to find overconfident traders.
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Figure 1
Expected evolution of overconfidence
Ex ante expected patterns in the level of overconfidence of the insider over time. The level κ̂t of insider
overconfidence at the end of any period t is measured as a ratio of the biased insider’s expected ability
over that of an otherwise unbiased insider, κ̂t = µ̄t (ŝt )/µt (ŝt ), where ŝt denotes the number of successful
predictions by the insider in the first t periods. This figure plots the ex ante expected value of κ̂t as a function
of the time period using H = 0.9, L = 0.5, φ0 = 0.5, � = � = 1. Each line was obtained with a different
value of the insider’s learning bias γ shown in the legend. Note that, with these parameter values, the insider
eventually learns his ability with probability one (zero) if his bias parameter γ is smaller (greater) than
γ ∗ = 25/9 ≈ 2.78.

Very successful traders will overestimate the likelihood that success is due
to ability rather than luck. But over many trading periods a trader’s success
rate is likely to be close to that predicted by his ability. Only those traders
with extreme learning bias (or with very unlikely success patterns) will fail
to recognize their true ability. Indeed, as γ increases, the insider tends to put
more and more weight on his past successes, and so takes a little more time
to find his correct ability. However, if γ is too large (γ > γ ∗), it is possible
that the insider puts so much weight on his past successes in the stock market
that he never recognizes his correct ability. It can be shown that E

[
κ̂t
]
then

converges to φ0 + (1− φ0)
H

L
.

Thus our model predicts that more inexperienced traders will be more
overconfident than experienced traders. Less experienced traders are more
likely to have success records which are unrepresentative of their abilities.
For some, this will lead to overconfidence. By the law of large numbers, older
traders are likely to have success records which are more representative of
their abilities; they will, on average, have more realistic self-assessments.
Given Figure 1, it is natural to ask what factors determine the point at

which a trader’s overconfidence is likely to peak. All other things being
equal, the greater a trader’s learning bias, γ , the longer it is likely to take
for his overconfidence level to a peak. Figure 2a illustrates this effect.
In addition to the degree of learning bias, how quickly a trader’s overcon-

fidence peaks (and how quickly he ultimately learns his true ability) depends
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Figure 2
Period of maximum overconfidence
The level κ̂t of insider overconfidence at the end of any period t is measured as a ratio of the biased insider’s
expected ability over that of an otherwise unbiased insider, κ̂t = µ̄t (ŝt )/µt (ŝt ), where ŝt denotes the number of
successful predictions by the insider in the first t periods. These figures plot the period of maximum expected
overconfidence, argmaxt E[κ̂t ], as a function of (a) the insider’s learning bias γ ; (b) the dispersion H − L of
the insider’s prior ability beliefs. Figure (a) was obtained with H = 0.9, L = 0.5, and φ0 = 0.5. Figure (b)
was obtained with φ0 = 0.5, γ = 1.1, and keeping the insider’s ex ante expected ability φ0H + (1 − φ0)L

constant at 0.7.

12



Learning to Be Overconfident

on the frequency, speed, and clarity of the feedback he receives. A trader who
receives frequent, immediate, and clear feedback will, on average, peak in
overconfidence early and quickly realize his true ability. One who receives
infrequent, delayed, and ambiguous feedback will peak in overconfidence
later and more slowly realize his true ability. In general, financial markets
are difficult environments for learning, as feedback is often ambiguous and
comes well after a decision was made. We would expect those who trade
most frequently, such as professional traders, and those who keep careful
records rather than relying on memory, to learn most quickly. In our model
a trader receives immediate feedback each period. The greater the difference
between the high (H ) and the low (L) ability levels, the clearer the feed-
back. Figure 2b illustrates how long it takes on average for the insider’s
overconfidence to peak as a function of H − L.

3.3 Effects of the insider’s learning bias
Section 3.2 shows that the insider’s learning bias has a dynamic impact on
his beliefs about his ability and on the way he interprets future private infor-
mation. This in turn affects the future trading process. In this and the next
section, we describe how this trading process, as measured by trading vol-
ume, trader profits, and price volatility, is affected. Let ψ̂t denote the trading
volume in period t . Since this trading volume comes from both the insider
and the liquidity trader, it is given by ψ̂t ≡ 1

2

(|x̂t | + |ẑt |
)
.

Lemma 4. Conditional on the insider having been successful s times in the
first t periods (i.e., conditional on ŝt = s), the expected volume, the expected
insider profits, and the price variance in period t+1 are respectively given by

E
[
ψ̂t+1

∣∣ ŝt = s
]

= 1√
2π

[√
� βt+1(s) +

√
�
]
, (14)

E
[
π̂t+1 | ŝt = s

] = 1

2

√
��

√
µ̄t (s)

[
2µt(s) − µ̄t (s)

]
, and (15)

Var
[
p̂t+1 | ŝt = s

] = �

2
µ̄t (s) µt(s). (16)

Since the insider’s learning bias is unaffected by his success rate and vice
versa, our model allows us to analyze the effects of the learning bias on
the insider’s behavior and on the properties of the economy in two different
ways. First, given a fixed past history of the insider’s successes and failures,
we can vary the size of his learning bias to get an idea of the impact of that
bias. This is the focus of the current section. Second, we can fix the insider’s
learning bias and determine the effects of different trading histories on the
insider and the economy in general. We will turn to this in Section 3.4.
Recall from Equation (7a) in Section 2 that the insider will multiply his

period t+1 signal, θ̂t+1, by βt+1(s) to obtain his demand for the risky asset in

13
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that period. In other words, βt+1(s) represents the insider’s trading intensity
in period t + 1 after having been successful s times in the first t periods. As
Equation (14) shows, greater average insider intensity leads to larger expected
volume.
Moreover, as noted in Section 3.2, a biased insider, who has had at least

one success, is always overconfident. In other words, the insider thinks that
his signal θ̂t+1 in period t +1 is more informative than it really is. This leads
him to use his information more aggressively than he should and results in
higher expected trading volume in the risky security. As the next proposition
demonstrates, the greater the learning bias the greater this trading.

Proposition 5. Given that ŝt = s, the expected volume in period t + 1 is
increasing in the insider’s learning bias parameter γ .

Notice that we can rewrite βt+1(s) given in Equation (12a) as

βt+1(s) =
√

�

�

[
2

Kt(s)
− 1

]−1
. (17)

This tells us that the trading intensity βt+1(s) of the insider in period t+1 is a
monotonically increasing function of the insider’s overconfidence Kt(s) after
t periods. Since we showed in Proposition 3 that the insider’s overconfidence
in any period is increasing in γ , it is natural to find that expected volume in
a particular period will also be increasing in γ .
We know that the biased insider trades too aggressively on his information;

in other words, the insider’s learning bias makes him act suboptimally. It is
therefore not surprising that the insider’s expected profits in any given period
are decreasing in his learning bias parameter γ .

Proposition 6. Given that ŝt = s, the expected insider profits in period t+1
are decreasing in the insider’s learning bias parameter γ .

The more overconfident the insider, the more he trades in response to any
given signal. This increases his expected trading relative to that of the liq-
uidity trader. Therefore, the signal-to-noise ratio in total order flow increases
and the market maker is able to make better inferences about the insider’s
signal. The market maker is then able to set prices that vary more in response
to θ̂t and are closer to the expected dividend conditional on the insider’s sig-
nal (E[v̂t | θ̂t ]) and further from its unconditional expectation (zero). This
increases price volatility.

Proposition 7. Given that ŝt = s, the expected price volatility in period
t + 1, as measured by the price’s variance, is increasing in the insider’s
learning bias parameter γ .

14
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3.4 Effects of the insider’s past performance
The effects described in Section 3.3 are static in the sense that they do not
depend on the insider’s past performance. Given any success history, the next
period’s trading volume and price volatility are expected to be larger and the
next period’s insider profits are expected to be lower when γ is large. These
results are analogous to the results documented by Odean (1998), who shows
that trader overconfidence has these effects in a one-period economy. Since,
as documented in Section 3.2, the insider’s learning bias eventually makes
him overconfident, our results are natural extensions of that study’s static
results. However, we also know from Section 3.2 that the insider’s overcon-
fidence changes dynamically with his past performance. In this section we
look at how, for an insider with a particular learning bias, the economy is
affected by that insider’s past performance.
The monotonic relationship between βt+1(s) and Kt(s) described in

Equation (17) also helps us characterize the conditional expected volume in
a particular period t + 1. For example, it is natural to find that the expected
one-period volume given s insider successes in the first t periods has the
same shape as Kt(s) as a function of s.

Proposition 8. The expected volume in period t + 1, conditional on the
insider having been successful s times in the first t periods (i.e., given ŝt = s),
is increasing over s ∈ {0, . . . , s◦

t } and decreasing over s ∈ {s◦
t , . . . , t}, for

some s◦
t ∈ {1, . . . , t}.

We next show that a learning bias can cause a successful insider’s expected
future profits to be smaller than a less successful insider’s. This is because
two forces affect an insider’s expected future profits: his overconfidence and
his expected ability. To disentangle these two forces, let us describe the
insider’s expected profits in period t + 1 after he has been successful s times
in the first t periods. We know from Section 3.2 that the insider’s overcon-
fidence at the end of t periods is at a minimum of 1 when s = 0. We also
know from Proposition 4 that overconfidence increases with the number s of
past successful dividend predictions (up to s∗

t ). This means that the insider’s
decision in period t + 1 will be more and more distorted as s increases.
At the same time, as s increases, it becomes increasingly likely that the
insider’s ability is high, though not as likely as the insider thinks. A biased
insider who becomes sufficiently overconfident may act so suboptimally that
he more than offsets the potential increase in expected profits coming from
his probable higher ability. As the insider’s overconfidence comes back down
(s > ŝ∗

t ), successes decrease the insider’s overconfidence while increasing his
expected ability. Thus both forces lead to additional expected future profits.
Figures 3a and b illustrate how the insider’s overconfidence and expected

ability counterbalance each other. In Figure 3a, we look at the insider’s
expected profits in period 11 as a function of the number of successes he
has had in the first 10 periods. It is clear from that figure that an unbiased
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Figure 3
Impact of insider’s past successes
These graphs show (a) the expected insider profits in period 11, (b) the insider’s overconfidence, K10(s) =
(µ̄10(s)/µ10(s)), at the beginning of that period, and (c) the expected profits of the insider in the first 10
periods, as functions of the number s of successful predictions by the insider in the first 10 periods. Every
graph uses H = 0.9, L = 0.5, φ0 = 0.5, � = � = 1. Each line was obtained with a different value of the
insider’s learning bias γ shown in the legend.
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insider with an additional past success always has higher expected profits in
period 11, since his expected ability is higher. However, when the insider’s
learning is biased, it is possible that his overconfidence (which we plot in
Figure 3b) prevents him from benefiting from the boost in expected ability
implied by an additional success. In fact, for this example, we can see that an
insider with γ = 2 or γ = 5 who has had six successes in the first 10 periods
does worse than an insider who has yet to predict one dividend correctly!
This simple numerical example can in fact be generalized as follows.

Proposition 9. Given that ŝt = s, the expected insider profits in period t+1
are increasing over s ∈ {0, . . . , s ′

t} and s ∈ {s ′′
t , . . . , t}, but are decreasing

over s ∈ {s ′
t , . . . , s

′′
t } for some (s ′

t , s
′′
t ) ∈ {1, . . . , t}2 such that s ′

t ≤ s ′′
t .

Since the insider, in this model, can only be perfectly right or completely
wrong in any given period, the correct measure of his past performance at the
beginning of period t + 1 is the number of his past successes (ŝt ). In reality,
traders can be right or wrong to different extents, and so the measure that is
typically used to measure their performance is past profits. It is easily shown
that, in our model, expected past profits are monotonically increasing in the
number of past successes. Figure 3c illustrates this for the above numerical
example. Therefore, future expected insider profits, as a function of past
profits, are first increasing, then decreasing, and then increasing again.
We finish this section by looking at the volatility of prices conditional

on the insider’s past performance. Expected volatility is not affected by
the insider’s successes in the same way as are overconfidence and volume.
Although expected overconfidence and expected trading volume can both be
nonmonotonic in the number of past insider successes, expected volatility
is always increased by one more insider success. More precisely, large pos-
teriors by the biased insider [µ̄t (s)] and the rational market maker [µt(s)]
both contribute to more expected volatility: the former by his unwarranted
aggressiveness, and the latter by his steeper price schedule.

Proposition 10. At the end of period t , the conditional expected volatility
in period t + 1 is increasing in the number of past successful predictions by
the insider in the first t periods.

3.5 Price patterns
Daniel, Hirshleifer, and Subrahmanyam (1998) argue that a trader’s overcon-
fidence in his long-lived private information can result in positive (negative)
price autocorrelation in the short (long) run. The information in our model is
short-lived in the sense that each signal obtained by the insider is advanta-
geous to him for one, and only one, period. As a result, consecutive market-
clearing prices are independent in our model, and this implies that the returns
(i.e., the price changes) are spuriously negatively autocorrelated through a
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Figure 4
Expected price patterns
Expected price in period t conditional on a dividend of $1 (v̂t = 1) being paid at the end of the period. The
figure was obtained with H = 0.9, L = 0.5, φ0 = 0.5, and � = � = 1. Each line was drawn with a different
learning bias parameter γ , shown in the legends. Note that, with these parameter values, the insider eventually
learns his ability with probability one (zero) if his bias parameter γ is smaller (larger) than γ ∗ = 25/9 ≈ 2.78.
As a result, the expected price only converges to its “unbiased” value of (1·H 2/2)φ0+(1·L2/2)(1−φ0) = 0.265
if γ < γ ∗; otherwise, it converges to a higher “biased” value.

bid-ask bounce, an effect originally documented by Roll (1984): cov(p̂t+1 −
p̂t , p̂t+2 − p̂t+1) = −var(p̂t+1). However, as we next show, we do find, like
Daniel, Hirshleifer, and Subrahmanyam (1998), that the expected evolution
of prices for a given dividend size can be hump-shaped.
In an economy where the insider’s ability is known ex ante (i.e., H = L =

µ), the expected price in any period t given a subsequent announcement of
v̂t = v is constant at E(p̂t |v̂t = v) = vµ2

2 . This is not true when the insider
learns about his own ability through time (when H > L). First, when the
insider learns his ability without a bias (γ = 1), he learns whether he should
use his information more or less aggressively over time. Unconditionally, the
expected price starts at vµ2

2 and converges to its long-run value of vH 2

2 φ0 +
vL2

2 (1− φ0). This is illustrated by the dotted line in Figure 4.
When the insider learns with a bias that is not too extreme (γ < γ ∗), the

insider may first push up the prices too high before learning the correct way
to interpret his information. However, if the insider is so biased as to refuse
to acknowledge his low ability despite persistent poor performance (γ ≥ γ ∗),
the expected price will monotonically increase to its long-run biased level.

4. Discussion

Our model predicts that overconfident traders will increase their trading vol-
ume and thereby lower their expected profits. To the extent that trading is
motivated by overconfidence, higher trading will correlate with lower profits.
Barber and Odean (2000) find that this is true for individual investors.
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While this evidence supports our model, our model does more than sim-
ply posit that investors are overconfident. We also describe a dynamic by
which overconfidence may wax and wane, both on an individual level and
in the aggregate (though the latter is not modeled formally). In times when
aggregate success is greater than usual, overconfidence will be higher. In our
model, success is measured by how well a trader forecasts dividends. This
formulation allows us to present closed form solutions. In many markets,
returns will be a trader’s metric of success. Traders who attribute returns
from general market increases to their own acumen will become overcon-
fident and therefore trade more actively. Therefore, we would predict that
periods of market increases will tend to be followed by periods of increased
aggregate trading. Statman and Thorley (1998) find this is so for monthly
horizons. Taking a longer view, overconfidence and its principal side effect,
increased trading, are likely to rise late in a bull market and to fall late
in a bear market. A bull market may also attract more investment capital,
in part, because investors grow more confident in their personal investment
abilities. This increase in investment capital could cause price pressures that
send market prices even higher.
In our model, investors are most overconfident early in their careers. With

more experience, self-assessment becomes more realistic and overconfidence
more subdued. Barber and Odean (1998) find that, after controlling for
gender, marital status, children, and income, younger investors trade more
actively than older investors while earning lower returns relative to a buy-
and-hold portfolio. These results are consistent with our prediction that over-
confidence diminishes with greater experience.

5. Conclusion

We go through life learning about ourselves as well as the world around us.
We assess our own abilities not so much through introspection as by observ-
ing our successes and failures. Most of us tend to take too much credit for
our own successes. This leads to overconfidence. It is in this way that over-
confidence develops in our model. When a trader is successful, he attributes
too much of his success to his own ability and revises his beliefs about his
ability upward too much. In our model overconfidence is dynamic, changing
with successes and failures. Average levels of overconfidence are greatest in
those who have been trading for a short time. With more experience, people
develop better self-assessments.
Since it is through success that traders become overconfident, successful

traders, though not necessarily the most successful traders, are most overcon-
fident. These traders are also, as a result of success, wealthy. Overconfidence
does not make traders wealthy, but the process of becoming wealthy can
make them overconfident. Due to their wealth, overconfident traders are in
no immediate danger of being driven out of the marketplace. As they age,
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less able, overconfident traders will lose both wealth and confidence. Some
may even cease to trade. However, in markets where inexperienced traders
continuously enter and old traders die, there will always be overconfident
traders. Furthermore, these traders will tend to control more wealth than
their less confident peers. Thus, overconfident traders can play an important
long-term role in financial markets.
As shown in our model, an overconfident trader trades too aggressively, and

this increases expected trading volume. Volatility is increasing in a trader’s
number of past successes. Both volume and volatility increase with the
degree of a trader’s learning bias. Overconfident traders behave suboptimally,
thereby lowering their expected profits. A more successful trader is likely to
have more information gathering ability but he may not use his information
well. Thus, the expected future profits of a more successful trader may actu-
ally be lower than those of a less successful trader. Successful traders do
tend to be good, but not as good as they think they are.
The principal goal of this article is to demonstrate that a simple and preva-

lent bias in evaluating one’s own performance is sufficient to create markets
in which investors are, on average, overconfident. Unlike models such as
De Long et al. (1990), in which biased traders survive by earning greater
profits, our model describes a market in which overconfident traders realize,
on average, lower profits. Though overconfidence does not lead to greater
profits, greater profits do lead to overconfidence. A particular trader’s over-
confidence will not flourish indefinitely; time and experience gradually rid
him of it. However, in a market in which new traders are born every minute,
overconfidence will flourish.

Appendix A

Proof of Lemma 1. Assume that Pt (ω̂t , ŝt−1) = λt (ŝt−1) ω̂t . This means that the insider’s
expected period t profits, when sending a market order of x̂t to the market maker, are given by

Eb[π̂t | θ̂t , ŝt−1, x̂t ] = Eb

{
x̂t [v̂t − Pt (ω̂t , ŝt−1)]

∣∣ θ̂t , ŝt−1, x̂t

}
= x̂t

[
Eb(v̂t | θ̂t , ŝt−1) − λt (ŝt−1)x̂t

]
. (18)

Differentiating this last expression with respect to x̂t and setting the result equal to zero yields

x̂t = Eb(v̂t | θ̂t , ŝt−1)
2λt (ŝt−1)

. (19)

Also, a simple use of iterated expectations and the projection theorem for normal variables
shows that Eb(v̂t | θ̂t , ŝt−1) = µ̄t−1(ŝt−1)θ̂t , as in Equation (8).
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Next, assume that Xt(θ̂t , ŝt−1) = βt (ŝt−1) θ̂t . As discussed in Section 1, the market maker’s
price is a function of the information he gathers from the order flow. More precisely,

p̂t = E[v̂t | ω̂t , ŝt−1] = E
[
E(v̂t | ω̂t , ŝt−1, δ̂t )

∣∣ ω̂t , ŝt−1
]

= E
{
δ̂tE

[
v̂t

∣∣ ω̂t = βt (ŝt−1)v̂t + ẑt , ŝt−1
] + (1− δ̂t ) · 0 ∣∣ ω̂t , ŝt

}
. (20)

Use of the projection theorem for normal variables shows that

E
[
v̂t

∣∣ ω̂t = βt (ŝt−1)v̂t + ẑt , ŝt−1
] = βt (ŝt−1)�

β2t (ŝt−1)� + �
ω̂t ,

so that we can rewrite Equation (20) as

p̂t = E

[
δ̂t

βt (ŝt−1)�

β2t (ŝt−1)� + �
ω̂t

∣∣∣ ω̂t , ŝt−1

]
= µt−1(ŝt−1)βt (ŝt−1)�

β2t (ŝt−1)� + �
ω̂t . (21)

�

Proof of Lemma 2. To see this, recall from the proof of Lemma 1 that the insider chooses a
demand x̂t = µ̄t−1(ŝt−1)θ̂t

2λt (ŝt−1)
in order to maximize

Eb[π̂t | θ̂t , ŝt−1, x̂t ] = x̂t

[
µ̄t−1(ŝt−1)θ̂t − λt (ŝt−1)x̂t

]
. (22)

Of course, this demand x̂t is not the same as that of a rational but otherwise identical insider,
who instead would be maximizing unbiased expected profits:

E[π̂t | θ̂t , ŝt−1, x̂t ] = x̂t

[
µt−1(ŝt−1)θ̂t − λt (ŝt−1)x̂t

]
. (23)

Since the market maker is rational in this model, he knows that the (biased) insider’s correct
expected profits are given by Equation (23), using the suboptimal demand x̂t :

E[π̂t | θ̂t , ŝt−1, x̂t ] = µ̄t−1(ŝt−1)θ̂t
2λt (ŝt−1)

[
µt−1(ŝt−1)θ̂t − λt (ŝt−1)

µ̄t−1(ŝt−1)θ̂t
2λt (ŝt−1)

]

= µ̄t−1(ŝt−1)θ̂
2
t

4λt (ŝt−1)

[
2µt−1(ŝt−1) − µ̄t−1(ŝt−1)

]
. (24)

Suppose first that the market maker quotes a price schedule with a positive slope. On aver-
age, he then expects to profit from the liquidity trader. To perform his market clearing duties
competitively, it must therefore be the case that the market maker loses that same amount to
the insider on average; that is, it must be the case that Equation (24) is positive. However,
when 2µt−1(ŝt−1) < µ̄t−1(ŝt−1), this is not the case, so that an equilibrium with a positively
sloped price schedule is impossible.
What happens if the market maker quotes a price schedule with a negative slope? From

Equation (22), we see that the insider’s problem degenerates, as he would then choose an
infinite demand. This would not only make his biased expected profits infinite (and positive),
but would also make his unbiased expected profits in Equation (23) infinite (and negative).
More than that, any negatively sloped price schedule implies that the market maker will also
lose against the liquidity trader. It is therefore impossible for the market maker to perform his
duties competitively with any negatively sloped price schedule. �
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Proof of Lemma 3. The sufficiency part of the argument is obvious as H ≤ 2L implies that

2µt−1(ŝt−1) ≥ 2L ≥ H ≥ µ̄t−1(ŝt−1).

To show necessity, we show that if 2L < H , then 2µt(s) < µ̄t (s) for some integers s and t

such that 0 < s ≤ t , and some γ > 1. So suppose that 2L < H . For any ε > 0, it is possible
to find integers s and t such that 0 < s ≤ t and µt(s) ≤ L + ε.
Since µ̄t (s) increases to H as γ increases to infinity, it is also possible to find γ > 1 such that

µ̄t (s) ≥ H − ε. By choosing ε to be strictly smaller than H−2L
3
, we have 2µt(s) ≤ 2(L + ε) <

H − ε ≤ µ̄t (s). This completes the proof. �

Proof of Proposition 1. By using Equation (11) in Equation (10) and rearranging, we obtain

2µt−1(s)�β2t (s) = µ̄t−1(s)�β2t (s) + µ̄t−1(s)�,

which is quadratic in βt (s). By Lemma 3, our assumption that H ≤ 2L ensures that 2µt−1(s) ≥
µ̄t−1(s), so we can solve for βt (s) and obtain Equation (12a), as desired (the other root is
rejected, since it represents a minimum, not a maximum). Finally, using Equation (12a) for
βt (s) in Equation (11) yields Equation (12b). �

Proof of Proposition 2. When â = H , we expect the insider to correctly predict the one-period
dividend a fraction H of the time. So, as t tends to ∞, we expect his updated posteriors φ̄t (s)

to behave like

1

1+
(

L

γH

)Ht (
1−L

1−H

)t−Ht 1−φ0
φ0

= 1

1+
[(

L

γH

)H (
1−L

1−H

)1−H

]t

1−φ0
φ0

.

This last quantity will converge to 1 as t → ∞ if
(

L

γH

)H (
1−L

1−H

)1−H
< 1, which is easily shown

to be the case.
When â = L, we expect the insider to correctly guess the one-period dividend a fraction L

of the times as t → ∞. So as we play the game more and more often (as t tends to ∞), we
expect his updated posteriors φ̄t (s) to behave like

1

1+
(

L

γH

)Lt (
1−L

1−H

)t−Lt 1−φ0
φ0

= 1

1+
[(

L

γH

)L (
1−L

1−H

)1−L

]t

1−φ0
φ0

.

So φ̄t (s) will converge to 0, φ0, or 1 according to whether the expression in square brackets is
greater than, equal to, or smaller than 1. It can be shown that these three situations will occur
when γ < γ ∗, γ = γ ∗, and γ > γ ∗ respectively, where γ ∗ = L

H

(
1−L

1−H

)(1−L)/L
. �

Proof of Proposition 3. Since the denominator of Kt(s) in Equation (13) is not a function
of γ , ∂Kt (s)

∂γ
will have the same sign as ∂µ̄t (s)

∂γ
. We show in Result B2 of Appendix B that

∂µ̄t (s)

∂γ
> 0. �

Proof of Proposition 4. In our model, the number of successes in the first t periods is obvi-
ously an integer in {0, 1, . . . , t}, but the function Kt(s) is well defined for any s ∈ [0, t].
However, we will have the desired result if we can show that Kt(s) is increasing for s ∈ [0, s0]
and decreasing for s ∈ [s0, t] for some s0 ∈ [0, t].
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Figure 5
Relationship between biased and unbiased beliefs
This figure shows φt (s) as a function of φ̄t (s). For any s ∈ [0, t], we have φ̄t (s) ≥ φt (s), so that all the
points {φ̄t (s), φt (s)}ts=0 must lie in the gray area. The thin solid lines represent the linear “iso-confidence”
curves Kt (s) = Ki , i = 1, . . . , 6 for 1 = K1 < K2 < · · · < K6. The thick solid line represents the parametric
curve {φ̄t (s), φt (s)}ts=0, where φt (s) and φ̄t (s) are given in Equations (1) and (4), respectively. As a function
of φ̄t (s), φt (s) is first concave and then convex.

To show this, recall that Kt(s) = µ̄t (s)

µt (s)
= L+(H−L)φ̄t (s)

L+(K−L)φt (s)
. If we define an “iso-confidence” curve

by Kt(s) = Ki for some constant Ki ≥ 1, each of these curves can then be written as a straight
line in a φ̄t (s)-φt (s) diagram. More precisely, each iso-confidence curve can be expressed as

φt (s) = 1

Ki

[
φ̄t (s) − (Ki − 1)L

H − L

]
.

These lines are shown as thin solid lines for 1 = K1 < K2 < · · · < K6 in Figure 5.
From Result B1 in Appendix B, we know that the parametric curve {φ̄t (s), φt (s)}ts=0 starts

at (0, 0) and is increasing. This curve is shown as a thick solid line in Figure 5. Since the
iso-confidence curves are linear in this φ̄t (s)-φt (s) diagram, we only need to show that φt (s)

in first concave and then convex as a function of φ̄t (s). Indeed, it will then be the case that
each iso-confidence curve is crossed at most twice or, equivalently, that Kt(s) is increasing and
then decreasing as a function of s. This can be shown using standard calculus and Result B1 in
Appendix B. �

Proof of Lemma 4. First, a standard result for normal variables is that, if ŷ ∼ N(0, σ 2), then

E
∣∣ŷ∣∣ =

√
2σ2

π
. We can therefore calculate

E
[
ψ̂t+1

∣∣∣ ŝt = s
]

= 1

2
E
[
|βt+1(s)θ̂t+1| + |ẑt+1|

∣∣∣ŝt = s
]

= 1

2

[
βt+1(s)

√
2�

π
+
√
2�

π

]

= 1√
2π

[
βt+1(s)

√
� +

√
�
]
,
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and this last expression is equal to Equation (14). The expression for expected profits is derived
as follows:

E
[
π̂t+1 | ŝt =s

] = E

{
E

[
π̂t+1 | ŝt ,θ̂t+1,x̂t+1

]∣∣∣ ŝt =s

}

(24)= E

{
E

[
µ̄t (ŝt )θ̂

2
t+1

4λt+1(ŝt )

[
2µt(ŝt )−µ̄t (ŝt )

]∣∣∣ ŝt ,θ̂t+1,x̂t+1

]∣∣∣ ŝt =s

}

(12b)= 1

2

√
�

�
µ̄t−1(s)

[
2µt−1(s)−µ̄t−1(s)

]
E
(
θ̂ 2t+1

∣∣ ŝt =s
)

= 1

2

√
��

√
µ̄t (s)

[
2µt(s)−µ̄t (s)

]
.

Finally, we have

var(p̂t+1 | ŝt = s) = E
(
p̂2t+1 | ŝt = s

)
= E

[
λ2t+1(ŝt ) ω̂

2
t+1

∣∣ ŝt = s
]

= E
[
λ2t+1(ŝt )(x̂t+1 + ẑt+1)

2
∣∣ ŝt = s

]
= E

{
λ2t+1(ŝt )

[
βt+1(ŝt )θ̂t+1 + ẑt+1

]2 ∣∣∣ ŝt = s

}

= λ2t+1(s)
[
β2t+1(s)E(θ̂

2
t+1 | ŝt = s)

+ 2βt+1(s)E(θ̂t+1ẑt+1 | ŝt = s) + E(ẑ2t+1 | ŝt = s)
]

= λ2t+1(s)
[
β2t+1(s)� + �

] = �

2
µ̄t (s) µt (s),

where the last equality is obtained by using Equations (12a) and (12b) in Proposition 1. This
completes the proof. �

Proof of Proposition 5. Given the expression for the conditional expected volume in Equation
(14), it is sufficient to prove that ∂βt (s)

∂γ
> 0. Straightforward differentiation of the expression for

βt (s) in Equation (12a) results in

∂βt (s)

∂γ
=
√

�

�

2µt−1(s) − µ̄t−1(s)

µ̄t−1(s)

µt−1(s)[
2µt−1(s) − µ̄t−1(s)

]2 ∂µ̄t−1(s)

∂γ
,

which in turn shows that it is sufficient to show that ∂µ̄t−1(s)
∂γ

> 0. This is shown to be true in
Result B2 of Appendix B. �

Proof of Proposition 6. To show the desired result, we only need to show that
µ̄t−1(s)

[
2µt−1(s) − µ̄t−1(s)

]
is decreasing in γ . This is straightforward to show since

∂

∂γ

{
µ̄t−1(s)

[
2µt−1(s) − µ̄t−1(s)

]} = −2 [µ̄t−1(s) − µt−1(s)
] ∂

∂γ
µ̄t−1(s),

and ∂

∂γ
µ̄t−1(s) is shown to be positive in Result B2 of Appendix B. �

Proof of Proposition 7. The result easily follows from the fact that ∂

∂γ
µ̄t−1 (s) > 0, which is

shown to be true in Result B2 of Appendix B. �
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Proof of Proposition 8. As shown in Lemma 4, the expected volume in period t + 1 is pro-
portional to the expected trading intensity βt+1(s) of the insider in that period. Since βt+1(s) is
monotonically increasing in Kt(s) [see Equation (17)], Proposition 4 immediately implies this
result. �

Proof of Proposition 9. This result is shown in essentially the same way that Proposition 4
was shown earlier, except that the “iso-profit” curves are now quadratic. �

Proof of Proposition 10. In view of Equation (16), this amounts to showing that the product
µ̄t (s)µt (s) is increasing in s. However, since both these quantities are increasing in s (see
Result B2 in Appendix B), the result follows easily. �

Appendix B

This appendix contains results that are used in the proofs of some propositions in Appendix A.

Result B1. The partial derivatives of φ̄t (s) in Equation (4) with respect to γ and s are
respectively equal to

∂φ̄t (s)

∂γ
= s

γ
φ̄t (s)

[
1− φ̄t (s)

] ≥ 0, and (25)

∂φ̄t (s)

∂s
= φ̄t (s)

[
1− φ̄t (s)

]
log

(
γH

L

1− L

1− H

)
≥ 0. (26)

Proof. Straightforward differentiation of φ̄t (s) yields
∂φ̄t (s)

∂γ
= s

γ
φ̄t (s)

[
1 − φ̄t (s)

]
, which is

obviously greater than or equal to zero. Now, it is easy to show that

∂φ̄t (s)

∂s
= φ̄t (s)

[
1− φ̄t (s)

]
log

(
γH

L

1− L

1− H

)
.

Since γH > L and 1−L > 1−H , this last quantity is obviously greater than or equal to zero. �

Result B2. The partial derivatives of µ̄t (s) in Equation (5) with respect to γ and s are
respectively equal to

∂µ̄t (s)

∂γ
= (H − L)

s

γ
φ̄t (s)

[
1− φ̄t (s)

] ≥ 0, and (27)

∂µ̄t (s)

∂s
= (H − L)φ̄t (s)

[
1− φ̄t (s)

]
log

(
γH

L

1− L

1− H

)
≥ 0. (28)

Proof. Since we have µ̄t (s) = Hφ̄t (s) + L[1− φ̄t (s)] = L + (H − L)φ̄t (s) and H > L, this
result follows immediately from Result B1 above. �
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